Name \qquad

1) Verify that the following is an identity: $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
2) Write as a sum (you can verify by graphing):
$y=\sin 3 m \cdot \cos m$
3) Solve the following to four decimal places: $2 \sin x=\cos 2 x$
4) Solve the triangle with the following: $\alpha=122^{\circ}, \gamma=18^{\circ}, b=12 \mathrm{~km}$
5) Sketch the graph of:
$r=4$
6) Write the exponential equation in logarithmic form: $32^{2 / 5}=4$
7) Verify that the following is an identity:

$$
(\sin x+\cos x)^{2}=1+2 \sin x
$$

4) Verify that the following is an identity: $\frac{\sin 2 t+\sin 4 t}{\cos 2 t-\cos 4 t}=\cot t$
5) Solve the triangle with sides:
$a=4 m, b=10.2 m, c=9.05 m$
6) Sketch the graph of:

$$
\Theta=\frac{\pi}{3}
$$

12) Solve the equation for x.
$e^{x^{2}+8}=e^{6 x}$
13) Find the domain, intercepts, and asymptotes of the logarithmic function and sketch its graph:
$h(x)=\log _{2}(x-4)$
14) Approximate the logarithm using the properties of logarithms, given $\log _{\mathrm{b}} 2=0.3562$ and $\log _{\mathrm{b}} 3=0.5646$.
$\log _{b}(3 / 4)$
15) Condense the expression to the logarithm of a single quantity. $3 \ln (7)+5 \ln (z-9)$
16) Convert the angle measure 65° from degrees to radians. Round to three decimal places.
17) Find three values for θ that make the
18) Find the exact values for:
statement true:
$\sin \frac{5 \pi}{2}=$
$\vartheta=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$\cos \frac{\pi}{6}=$
19) Use the given function values and the trigonometric identities to find the exact value of each indicated trigonometric function.
$\sin (\alpha)=\frac{12}{13}$
$\sin (\alpha)=$
$\tan (\alpha)=$
$\csc (\alpha)=$
20) Solve exactly for all values of Theta on $[-2 \pi, 2 \pi]$ where $\sin \Theta=1$

$$
\cos (\alpha)=
$$

$$
\cot (\alpha)=
$$

$$
\sec (\alpha)=
$$

21) Solve exactly for all values of Theta on $[-2 \pi, 2 \pi]$ where $\tan \Theta=-1$
22) Sketch the graph of $y=\arcsin x$ and give the domain and range.
23) State the period and amplitude for $y=4 \sin 3 x$

Period:

Amplitude:

24) Verify the identity:

$$
\frac{\cos ^{2}\left(\frac{\pi}{2}-x\right)}{\cos (x)}=\sin (x) \tan (x)
$$

25) State the quadrant in which θ lies when: $\sin \theta<0$ and $\cos \theta>0$

Use a calculator to evaluate the trigonometric function. Round your answer to four decimal places.
$\sec 225^{\circ}=$ \qquad
26) Verify the identity:

$$
9 \cos (t)+9 \sin (t) \tan (t)=9 \sec (t)
$$

28) Approximate (to three decimal places) the solutions of the equation in the interval $[0,2 \pi)$.
$4 \tan ^{2}(x)=19$
29) Verify the identity.
$\sec (x)-\cos (x)=\sin (x) \tan (x)$
30) Solve for a triangle given
$\mathrm{a}=51 \mathrm{~m}$
$\mathrm{A}=$
$\mathrm{b}=\quad \mathrm{B}=20^{\circ} 30^{\prime}$
$\mathrm{c}=41 \mathrm{~m}$
$\mathrm{C}=$
31) Verify the identity (Hint: try factoring):

$$
9 \cos ^{2} \beta-9 \sin ^{2} \beta=9-18 \sin ^{2} \beta
$$

29) Solve the equation.
$10 \cos ^{2}(x)+5 \cos (x)-5=0$
30) Find the exact values of the sine, cosine, and tangent of the angle. $\frac{11 \pi}{12}=\frac{3 \pi}{4}+\frac{\pi}{6}$
